
Appendix B

The Five Orders
of Ignorance

He who knows not and knows not that he knows not; he is a fool - shun him!
He who knows not and knows that he knows not; he is simple - teach him!
He who knows and knows not that he knows; he is asleep - wake him!
He who knows and knows that he knows; he is wise - follow him!

- Isabel Lady Burton 1831-1896
Arab Proverb, "The Life of Captain Sir Richard F Burton"

Software is not a product. It is the fifth knowledge storage medium that has
existed since the world began. This premise leads us to an interesting ques­
tion: If software is not a product, then what is the "product" of our efforts
to "produce" it? The answer, of course, is that the real product is the knowl­
edge contained in the software.

It is rather easy to produce software; dangerously so, in fact. It is much
harder to produce software that "works," because before we can produce
it, we must understand what "works" means. It is easy to produce software
that is simple, because it does not contain much knowledge. It is easier to
produce software using an application generator, because the knowledge
of how to produce a system (although not necessarily of the system that
needs to be produced) is actually stored in the application generation soft­
ware. It is easy for me to produce software if I have already produced this
type of software before, because I must have already obtained the neces­
sary knowledge - assuming I have not forgotten how to create it.

Therefore, the hard part of building systems is not building them, it is in
knowing what to build - it is in acquiring the knowledge necessary to
build the system.

This leads us to another very important observation:

If software is not a product, it is a medium for storing knowledge; then soft­
ware development is not a product-producing activity, it is a knowledge­
acquiring activity.

It is quite easy to show this using a (slightly exaggerated) example, as
shown in Exhibit 1.

227

THE LAWS OF SOFTWARE PROCESS

1' A Hacking Model Project: Early Exploration

Indeterminate unvalidated '.
information-could be

knowledge or "unknowledge"

Time spent finding knowledge+

Exhibit I. Hacking project early exploration.

The activity of hacking (in the software life cycle sense, rather than the
other common usage of illegal entry into someone else's computer system)
is the writing of code for the purpose of constructing a system whose func­
tion is at least somewhat unknown at the outset. While this kind of hacking
has a justifiably bad reputation, it is quite common for programmers to use
this approach in the small - for simple problems and for systems where
the knowledge-to-be-gained is primarily the program steps or control
sequence.

In the earliest stages of hacking, we have little or no basis on which to
validate the knowledge content of the code - we just write code. The dia­
gram in Exhibit 1 represents a project using this hacking approach to
development. The approach could be summarized as "we have no idea
what we 're doing, but we'll do it and somehow it'll work." In a nonrigorous
sense, both the X and Y axes in the diagram represent time. X-time is time
spent mostly in developing "correct" knowledge, that is, knowledge that
will ultimately find its way into the product shipped to the customer. Y-time
is time spent mostly in developing "incorrect" knowledge, which is knowl­
edge that is not immediately relevant to the product at hand and will not
be, or rather should not be, incorporated into the product. Because hack­
ing (except in the trivial case where we have already built this exact system
before, in which case we might reasonably ask why are we doing it again?)
is building a system without knowing what it should do, the fact that the

228

The Five Orders of Ignorance

Validated
"knowledge"

Time spent finding knowledge

Exhibit 2. Hacking project: validating the knowledge.

path deviates from the straight and narrow is simply caused by the fact
that we do not know what to begin with, what that path should be, and
where it should go.

Using hacking we usually salvage some useful knowledge (shown in the
solid line in Exhibit 2), from the coding activity. Much of what we learn,
however, is not useful knowledge, at least not for this particular system.
This "unknowledge" is shown as a dotted line. Generally, it is stripped from
the code product, leaving only the solid "useful" knowledge. This strategy
continues until the complete set of knowledge is obtained (we hope).

At some point, to determine whether what we have done is knowledge
or unknowledge, we have to "validate" the knowledge we have gained and
incorporate it into the code artifact. In Exhibit 2 it is called the "Validation
Point." With hacking, this usually occurs quite frequently, It also means,
incidentally, that we must have access to another source of knowledge
about what the system should do; otherwise we must end up comparing
the knowledge store against itself.

There are two results from this validation process:

1. We determine what works.
2. We determine what does not work (for this particular system).

The "what works" we leave in the code, the "what does not work" we usu­
ally remove.

229

THE LAWS OF SOFTWARE PROCESS

iruter u1,wulidated
vte1tf!e/un1knowledge

Builds on validated
zkn owledgef

Time spent finding knowledge

Exhibit 3. Hacking project: building on the knowledge.

Using the residual "what works" knowledge, we commence further
exploratory coding, as shown in Exhibit 3.

Carrying on in this fashion, we continually add to the system knowledge,
backtrack, and purge the "incorrect" knowledge. The final "product" is
shown in Exhibit4.

There are a few observations we can make about this activity:

• The problem of late discovery. The approach does not work too well
when there is a likelihood of later knowledge invalidating earlier
knowledge. On the graph this would mean a very big backtrack and
a lot of dotted "unknowledge." In the real world this would mean a
large amount of redesign late in the development cycle. This hap­
pens often in larger, complex systems where a great deal of informa­
tion is obtained from the later design and testing phases. It also
seems to be a feature of embedded real-time systems and other
applications where there is a high degree of design dependence.

• Two kinds of knowledge. We are actually acquiring two different kinds
of knowledge: solid-line and dotted-line, knowledge and "unknowl­
edge,'' or in English what works and what does not (for this system).
Note that the "solid-line" knowledge is incorporated into the soft­
ware artifact, while the "dotted-line" unknowledge is simply thrown
away. We could argue that knowing what does not work is also

230

The Five Orders of Ignorance

•••

.... on•••n•••••U••oo•••~•••ooo•o•ooo••••o•ooo•ooo
,.ooooooooooooouooouooonoo: :

" : Effort resulting in : / l "unknowledge" j
~·· l '!.~!!.1!.~~~~!~!! J

Effort resulting in
knowledge acquisition

Time spent finding knowledge+

Exhibit4. Hacking project: Full build.

Exhibit 5. Edison quote.
Just because something doesn't do what you planned it to do in the first place doesn't
mean it's useless If I find 10,000 ways something won't work, I haven't failed. I am not
discouraged, because every wrong attempt discarded is just one more step forward.

- Thomas Alva Edison

potentially very valuable information but such unknowledge is usu­
ally thrown away. Thomas Edison's apt quote in Exhibit 5 does not
tell the full story. Not only are missteps eliminating "wrong" paths,
the process of "misstepping'' may be the only mechanism available
to us to illuminate the real path. Sometimes we have to try it to find
out what will work by exploring what does not.

• Corrupted knowledge. The final delivered product (the wandering
solid line) is not usually a good and clean representation of the
knowledge necessary for the system. The "kinks" in the line are
caused by the activity of acquiring the knowledge or, more correctly,
the activities of separating the knowledge from the unknowledge
and validating the knowledge in some way. That is, the final code
representation of the knowledge does not just contain the knowledge

231

THE LAWS OF SOFTWARE PROCESS

Exhibit 6. A path through the woods.

necessary for the system to function correctly. Unless great effort
is made to separate what works from what does not, it also contains
the remains of the journey to find that knowledge.

Invariably, the final code product is somewhat contaminated with the
legacy of the process used to build it. Usually the developer knows this and
understands that the code, while "correct," is not "good code." However,
no one else does. And in a year's time, even the original developer will be
at a loss to explain just why the code is written the way it is. The reason for
this is that the contextual knowledge (knowledge of why the code was writ­
ten the way it was) was stored in the most volatile of knowledge stores -
the human brain of the developer.

A Walk in the Woods

An analogy may help to explain. Imagine walking through a dense wood
through which you have never set foot (see Exhibit 6). Given that you have
never walked through this wood before, it would be close to impossible to
traverse the wood without taking a "wrong" path. This is intrinsic to the
process of discovery. Even if the destination is clearly visible (the require­
ments are well defined), the path to get there is at least partially obscured.

232

The Five Orders of Ignorance

In fact, we could argue that the only way in which we could flawlessly nav­
igate to the destination is if we had already been there (we have already
built this system). In which case, we could argue "why are we going there
again?" If we had a map available to us to assist us in minimizing our wrong
turns, it means that someone (the map maker) must have followed this
path. This means this product has already been built - so, again, why are
we building it? The concept of a process "map" is often held out as the pur­
pose of establishing process in software development. We shall see later
how flawed this idea is in practice.

The only way in which we can very quickly and effortlessly navigate to
the destination is if someone has built a six-lane highway through the
wood. In this case we are, of course, going in the same direction as every­
one else. In the systems sense, we are building the same kind of system

· everyone else is building, in which case we have no competitive advantage.

A Path Less Traveled

We could argue that the only paths we should travel are those that no
one has taken before. These are the journeys that lead into the unknown,
to the novel destinations, that uncover new knowledge, rather than revisit
old knowledge. While we rarely if ever develop 100 percent new systems,!
the entire knowledge content of which is novel, most systems of any worth!
have at least some of this new discovery. But it is in this new knowledge\
that the real value of the systems lies. What we shall explore is the nature
of this knowledge and the processes we use to discover and encapsulate it.

Tracks

As we make our way through the woods, we leave footprints. When we
find ourselves backtracking because the path we took turned out to be
"wrong" - it led to a different destination than the one we wanted - we
leave more footprints. Unless we are very careful to wipe out the footprints
heading in the wrong direction, they will still be there when someone else
follows us. In the absence of other information, these tracks are likely to
lead the other person astray also. In code, these tracks are the legacy of the
earlier attempts to write effective code. Unless the author works hard to
remove them, there will be extra variables, states, conditional statements,
loops, and other code devices that are not necessary for the final solution
of the problem. It is the sheer amount of rewriting of code to remove this
legacy that makes the hacking model a poor one for larger systems

It is not usually possible to tell immediately if the code is "real path"
code or a legacy from a "false path" - unless one has an alternative source
of knowledge. For the person writing the code, it may be in his or her brain.
For the maintenance programmer several years later, the comments in the
code (a form of knowledge-in-books) may explain why the code looks the

233

~ ,-,,, , ..
, ,.; , .. -.,,,

THE LAWS OF SOFTWARE PROCESS

1. Get Context • • • • II • • •

2. Get Questions - - •

3. Apply Answers ----•

201 = all the things that
we will have to find /
out, that /-------- 1
we don't / 101 = •
know / Things we ,

: know we domt
about \ donft know:

Exhibit 7. Prototyping.

I
I

\ Questions~

• Exoloration
• • ill- •••••••

• • Specific •
Questions • - - - -
001 fl things we

know:
Answers

- _I
Questions

way it does. The difficulty of separating real knowledge from the missteps
is one of the reasons that reverse engineering activities have rarely been
effective.

Code is, in essence, a write-only knowledge store - it is much easier to
put knowledge into code than it is to extract it.

Prototyping

From the prototyping example (Exhibit 7) it is evident that the real job
is not writing the code or even "building" the system - it is acquiring the
necessary knowledge to build the system. In fact, when hacking we use the
activity of building the system (or rather attempting to build the system)
as the mechanism for understanding what the system has to do. Hopefully,
the correctly coded system is a by-product of this activity. The problem
arises when we think the code is the product rather than the knowledge in
the code. Then we are tempted to ship the code as it is, however it is, once
we get enough of it. If we wished to gain an untainted representation of the
code, what we should do with the hacking model, of course, is to rewrite
the code so that it cleanly represents the knowledge after the hacking stage.
If we have done a good job of capturing what we have learned by hacking

234

The Five Orders of Ignorance

the code, writing it again should be straightforward and rather quick. The
act of doing this intentionally is called prototyping.

As a development life cycle model and arguably a business model proto­
typing actively acknowledges that our job is not to build a system but to
acquire knowledge. We do not expect to get a functioning system first time
out when we prototype. What we do expect to get is (at least some of) the
knowledge we need to build the system. We use prototyping particularly
when we do not know in advance what kind of knowledge we might need.
We would not consider prototyping in situations where we knew what we
had to do in advance.

While we have used the activity of hacking code as a way of explaining
this concept, it is actually true of all development and all development
stages. We leave tracks and missteps in feasibility studies. We have ambi­
guities and mistakes in requirements and design documents. We learn
things that invalidate what we have put down to date during the creation
of test cases and test plans just as much as in code. All software develop­
ment is predominantly knowledge acquiring rather than product produc­
ing.

The Expectation of Product

However, the acquiring of knowledge is neither the business expectation
nor the business goal in most companies. Few companies, even those that
create and sell software only, count knowledge acquisition and manage­
ment as their highest priority. Most operate on a modified manufacturing
model that views the creation and delivery of the system to the customer
as the highest priority. It is not, and this prevailing view has caused consid­
erable problems to both customers and developers for decades.

Kinds of Knowledge

If our job is to acquire knowledge, what kinds of knowledge should we
acquire? In a later chapter we will discuss systems knowledge as well as
other kinds of essential knowledge that is not coded into the functional
artifact. For now, we will talk in more-general terms about what we might
know and what we might not know.

For every item of knowledge we possess, we also have a certain amount
of ignorance. In fact there is evidence that our "ignorance" always exceeds
our knowledge. Ignorance is simply the other side of the coin of knowledge.
If we view systems development as the acquisition of knowledge, then we
can also view it as the reduction or elimination of ignorance. We can also
reasonably assume that, at the start of the project, we are more ignorant
than we are at the end of the project, although as we shall see, in terms of

235

THE LAWS OF SOFTWARE PROCESS

known ignorance, this may not be true. So what kinds of ignorance might
we exhibit?

Based on what we know and what we do not know, we can classify our
ignorance into strata or layers. I call these levels the "Five Orders of Igno­
rance. "While the concept is quite general and even somewhat philosophi­
cal, quantizing our knowledge and ignorance can be helpful as we try to
understand what we need to do to learn and build a system that works. The
Five Orders of Ignorance (50oI) also helps to explain some of the puzzling
things that routinely happen in the software development environment,
and also some of the behaviors we exhibit trying to create software.

The Five Orders of Ignorance

For very logical, but to noncomputer folk entirely baffling, reasons we in
the software business always start counting from zero rather than one.
Therefore, the 50oI start with zero.

Zeroth Order Ignorance (001): Lack of Ignorance

I have Zeroth Order Ignorance (OOI) when I know something and can
demonstrate my lack of ignorance in some tangible form, such as by build­
ing a system that satisfies the user.

OOI is provable and proven knowledge that is deemed "correct" by some
qualified agency. In software this means that the knowledge is invariably
factored into usable form. In all forms of knowledge there must be some
external "proof" element that qualifies the knowledge as being correct.

In a nonsoftware arena and as a personal example, because it has been
a hobby of mine for many years, I have OOI about the activity of sailing,
which, given a lake and a boat, is easily verified.

First Order Ignorance (101): Lack of Knowledge

I have First Order Ignorance (101) when I do not know something and I
can readily identify that fact.

IOI is basic ignorance or lack of knowledge. Example: I do not know how
to speak the Russian language. I could remedy this deficiency by taking les­
sons, reading books, listening to the appropriate audiotapes, or moving to
Russia for an extended period of time.

Second Order Ignorance (201): Lack of Awareness

I have Second Order Ignorance (20I) when I do riot know that I do not
know something.

That is to say, not only am I ignorant of something (I have IOI), I am
unaware of what it is I am ignorant about. I do not know enough to know

236

The Five Orders of Ignorance

what it is that I do not know. Example: I cannot give a good example of 20I,
of course.

Third Order Ignorance (301): Lack of Process

I have Third Order Ignorance (301) when I do not know of a suitably effi­
cient way to find out that I do not know that I do not know something,
which is lack of a suitable knowledge-gathering process.

This presents me with a major problem: If I have 301, I do not know of a
way to find out that there are things that I do not know that I do not know.
Therefore, I cannot change those things that I do not know that I do not
know into either things that I know, or at least things that I know that I do
not know, as a step toward converting the things that I know that I do not
know into things that I know.

For systems development, the "suitably efficient" proviso must be
added, because there is always a default 301 process available. The
"default" 301 process is to go ahead and build the system without knowing
what is not known. The code hacking model does this using the coding
activity. For very small systems, with certain characteristics that we shall
discuss later, this can sometimes be an efficient process. For larger sys­
tems, the default 301 process is usually neither suitable nor efficient

Fourth Order Ignorance (401): Meta Ignorance

I have Fourth Order Ignorance (401) when I do not know about the Fiye
Orders of Ignorance.

I do not have this kind of ignorance, and now neither do you, dear
reader. 401 is meta ignorance - it is rather like being ignorant of the sub­
ject of ignorance. However, a version of 401 is the prevalent attitude that
this book attempts to challenge; specifically, that software is a product and
that the software development business is the business of building sys­
tems rather than acquiring knowledge.

Knowledge is highly and intrinsically recursive - to know about any­
thing, you must first know about other things which define what you know.
The Fourth Order of Ignorance for software development purposes could
be restated as: "I have Fourth Order Ignorance when I don't know that soft­
ware development is the activity of acquiring knowledge, and I don't know
what my levels of knowledge are. "It reflects the natural recursion we always
encounter when talking about knowledge.

The Five Orders of Ignorance in Systems Development

Each of the Five Orders of Ignorance plays a significant role in building
systems.

237

THE LAWS OF SOFTWARE PROCESS

001

OOI is provable, functional,. and correct knowledge. In order to qualify
for the label "knowledge" it must have been:

• "Known" by someone
• "Validated" against another source of knowledge
• Made into an executable form (if the storage medium of choice is

software)

These are the correctly functioning elements of the system that I (obvi­
ously) understood, and have successfully incorporated into the system.
When I have OOI, I have the answer to the problem.

101

These are the things I know I do not know. In a typical system's develop­
ment project, they are the known variables, where the presence of the vari­
ables is known, but not their instance values. When I have IOI, I have the
question. In the gamut of systems development effort, we usually find that
having a good question makes it fairly easy to find the answer. Of course,
we may have a good question but not know how or from whom to obtain an
answer. This means our IOI is incomplete, and incorporates other levels of
ignorance. We will tackle more subtle variations of the Orders of Ignorance
in a later chapter.

201

Second Order Ignorance represents my primary problem in construct­
ing systems. Not only do I not have the answer I need, I do not even have
the question. This is, in fact, where we start many projects. Usually, when
we start a project, we know from experience that there are many things we
will have to learn. The problem is we just do not know what they are. 201
explains, for instance, most variation in project estimates, and the famous
"90-Percent-Complete Program Syndrome."

301

Third Order Ignorance operates at the process level. Rather than lacking
product knowledge (i.e., of the target system), I am lacking knowledge of
how to acquire the target knowledge. For the fully qualified 301, I am lacking
the knowledge of how to acquire the knowledge in a suitably efficient way.
This means I do not have a sufficiently effective process that will allow me
to build the system (acquire the knowledge) within my budget and time
constraints. If this is coupled with 201, I have a real danger - I simply do
not have a way to resolve my lack of knowledge in the time I have available.
In later chapters, I maintain that all software development methodologies are

238

The Five Orders of Ignorance

actually 30I processes; their job is to show the areas of the product or pro­
cess where there is lack of knowledge.

Coupled with 20I, 30I represents the true challenge of software develop­
ment. The reasoning is simple: I have 001 (the answer), then it is simply a
matter of putting the extant knowledge into the product (assuming that I
know how to do that, of course). If I have IOI (the question), it is simply a
matter of finding out where the answer to the question exists and obtaining
that answer. While resolving 1 OI is somewhat more effortful than applying
OOI, both these operations are typically low in effort. It is in the reduction
of 20I and 301 that the real effort lays.

In the pursuit of process and methodologies, people and organizations
sign up for some very "heavyweight" procedures: enormous manuals on
how to factor systems, huge checklists, multiple process steps, and repet­
itive reviews and inspections. Others look for the answer in the methodol­
ogy - they adopt a set of complex and difficult systems definition and
design conventions and languages in the hope that in transcribing their
knowledge into these modeling forms, they will acquire the knowledge
they need. Both process and methods (and languages) have their places
and they are important. But it is important to note that the answer we are
looking for cannot be in the methodology or the process. A methodology
simply gives the syntax in which to frame the question and a discipline for
identifying those areas where I might have 201. But it cannot know what I
am trying to do. A process simply gives a framework in which the discov­
ery activities can take place. The process cannot perform the discovery
activities.

A movement is afoot in the software business that is leaning toward
what are called "Agile" (or "lightweight") methods. These methods attempt
to allow for the freedom of discovery while still maintaining the consis­
tency of process necessary to obtain predictable and repeatable results.
We will discuss these methods at length in a later chapter.

401

Fourth Order Ignorance is probably not too much of an issue at a prac­
tical level on projects, although I have found thinking of the process of
developing software even in the small does help. At an organizational level,
I believe this is the problem that is holding us back from truly capitalizing
on the productivity gains we are capable of. The nature of knowledge is
recursive, and it is appropriate that the "highest" level of ignorance reflects
this recursion.

The 30I Cycle

The function of process is threefold:

239

THE LAWS OF SOFTWARE PROCESS

1. Get Context • • • • • • • • • • • •

2. Get Questions - - - •
3. Apply Answers flt

Exoloratlon
•· ••iili11 • ••••••• ':

• Specific
201 = all the thmgs that Questions
we will have to find / - - - -
out, that ..--.... -- -~--., /
we don't / 101=

I

k I Thingswe now ! know we don't
about \. don't know:

\., Questions 'ti!;

Exhibit 8. Order of Ignorance cycles.

L To identify whether there are areas where we have ignorance (need
to acquire knowledge)

2. To identify what questions we would need to ask to resolve igno­
rance in these areas

3. To obtain the answers to these questions in a form that we can
usefully integrate into the system

The operation of these processes is shown in Exhibit 8.

• The "highest level" 30I process operates on the "body of lack of
knowledge" implied by the 20I cloud. The 30I process is shown by
the small dotted line. The 30I process somehow acts on both the
environment that (presumably) contains the needed knowledge plus
the currently available knowledge present in the project team. How
the 301 process actually works depends greatly on the system, the
situation, how much knowledge is needed, and what is already
known. For situations with high degrees of 20I, these are extremely
exploratory operations, often executed in cycles, with each cycle
closing in on the real knowledge source. The output from this phase
is a set of contextual questions. Comparing the contextual questions
and their answers against the environment allows us to identify
where our ignorance lies.

• The next level converts the contextual questions into specific ques­
tions. The purpose of the first loop is to identify where we might

240

The Five Orders of Ignorance

have ignorance, this second loop is to identify what that ignorance
might be. Fed through the process, these questions should elicit
answers, although commonly each answer generates other ques­
tions and sometimes painfully illuminates whole areas that require
further investigation.

• The final step is to convert the specific questions into specific
answers and apply these answers. At this point we can certify the
output as OOI or extant knowledge.

The steps are:

Undifferentiated Lack of Knowledge (20I) ~
Identified Lack of Knowledge (1 OI) ~

Knowledge (001)

The fly in the ointment has already been identified - it is that the ques­
tion-answering process almost invariably generates more questions. Sim­
ply put, acquiring knowledge also illuminates more areas of lack of knowl­
edge. For projects tackling systems targets with large quantities of 20I, this
can seem never-ending. For each fact that is found, it seems that an equal
number of questions are raised. If a project's or a manager's vision of the
goal is a fully factored set of knowledge as exhibited by a working system,
simply exposing more and more areas of ignorance is very frustrating.
However, if we took the goal to be the acquisition of useful knowledge, we
would find the process significantly less frustrating. Here we see one of the
functions of changing our business goals, outlook, and expectations away
from product and onto knowledge.

The Inability to Measure Knowledge

The view of software as a knowledge medium and software development
as a process of acquiring the knowledge necessary to populate this
medium leads us directly to a very uncomfortable conclusion concerning
what we do. After thinking about the problem for a couple of thousand
years, the human race has not found a way to empirically measure knowl­
edge. Not only can we not measure it, we do not have a unit for knowledge.
We can weigh a book, we can count the number of pages, the quantity of
lines and words in it, but we cannot count the quantity of knowledge in it.
There is simply no way to do this.

Assessing quantity of knowledge is always done using a comparison
against another body of knowledge. There are no knowledge measurement
axioms on which we can base a quantification system. This is true for
books, it is true for humans, and it is true for software. In fact, we assess the
quantity of knowledge in a software system in exactly the same way we
assess the quantity of knowledge in a human - by examination. In a
human, the test results from the completed examination paper (run under

241

' ,.;;.-·.: ti

., ~ ·, ;

"

THE LAWS OF SOFTWARE PROCESS

controlled conditions) are compared against the professor's answer. If the
match is sufficiently close, the person gets a gown, a hat, and a roll of
paper. This certifies that the person (at that moment in time) "knows" a
quantity of knowledge. For a software system, if the actual observed
results of the test (run under controlled conditions) sufficiently match the
expected results, it is presumed that the system does, in fact, contain the
required knowledge (at that moment in time). The system is certified for
use and is released to the world to go and find a real job. Program code
inspections closely resemble job interviews for much the same reason -
they are both knowledge and capability assessment practices. If a person
passes the interview it is presumed that he has either the necessary knowl­
edge or capability or both, and he is offered a job. If a piece of code is
deemed by inspection to possess the appropriate knowledge, or is suffi­
ciently well structured that the expected knowledge can be easily added (a
measure of knowledge capability), the program is released into the next

.. stage of development.

· Our inability to actually measure knowledge means that much of our met­
ric process is built on a foundation of sand. Compounding this is the fact that
the critical measure of knowledge in software is not the measure of knowl­
edge in software; it is the measure of the knowledge that is notin the software.
This is the knowledge we have to get, not the knowledge we already have. As
described earlier, the key determinant of a software project is the 20I, which
is knowledge we do not know we do not know. So we are in a double bind. Not
only can we not measure knowledge we have, what we really want to measure
is knowledge we do not have. If we could empirically measure knowledge, we
would be able to assess OOI, and probably we would be able to do a good job
at measuring 101. We still would not be able to "accurately" measure 201,
because we would still not know what it is by definition.

This is not a purely philosophical challenge. All project estimation
approaches fail to some degree at this point. All project status tracking
efforts are compromised by this, and it is the biggest source of recurrent
failure in our ability to make commitments we can keep and keep commit­
ments we make.

Summary

At a practical level in developing systems, the critical levels of ignorance
on most projects seem to be 20I and 301. It is reasonable to assert that
almost all of our work on projects involves the reduction of 20I into 101
and finally into 001. The rationale is straightforward: if we already have the
answer (001), it usually does not require much effort to apply it. Even if we
do not have the answer, but we do have a specific question (and presum­
ably also the knowledge of how to get an answer), then obtaining the
answer does require some effort, but not much. The effort-intensive activ-

242

The Five Orders of Ignorance

ity is discovering what it is we do not know. Therefore, it is reasonable to
assert that most of our work is the reduction of 201. We will also assert that
all software and systems methodologies are 301 processes whose job is not
to tell us what we know as much as to illuminate our 201. The application
of a 301 process to 201 generates either IOI or more rarely 001. That is,
applying an effective development process either gives us the answer (001)
or, more commonly, it gives us the question (101).

Because process and methodologies are often sold on the basis of how
much they can structure the knowledge and the activity of acquiring it, it
can be quite startling to realize that the primary purpose of process is to
show us where we have lack of knowledge. Yet if we acknowledge that the
true role of the development process is to acquire knowledge, and the most
valuable knowledge is knowledge we do not already have, this is the most
powerful thing we can do in development.

243

